
An Introduction to Software
EngineeringEngineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 1

ObjectivesObjectives

 To introduce software engineering and to explain  To introduce software engineering and to explain
its importance

 To set out the answers to key questions about  To set out the answers to key questions about
software engineering

 To introduce ethical and professional issues and  To introduce ethical and professional issues and
to explain why they are of concern to software
engineers

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 2

Topics coveredTopics covered

 FAQs about software engineering FAQs about software engineering
 Professional and ethical responsibility

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 3

Software engineeringSoftware engineering

 The economies of ALL developed nations are  The economies of ALL developed nations are
dependent on software.

 More and more systems are software controlledMore and more systems are software controlled
 Software engineering is concerned with theories,

methods and tools for professional software
development.development.

 Expenditure on software represents a
significant fraction of GNP in all developed significant fraction of GNP in all developed
countries.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 4

Software costsSoftware costs

 Software costs often dominate computer system  Software costs often dominate computer system
costs. The costs of software on a PC are often
greater than the hardware cost.greater than the hardware cost.

 Software costs more to maintain than it does to
develop. For systems with a long life, develop. For systems with a long life,
maintenance costs may be several times
development costs.

 Software engineering is concerned with cost-
effective software development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 5

FAQs about software engineeringFAQs about software engineering

 What is software? What is software?
 What is software engineering?
 What is the difference between software  What is the difference between software

engineering and computer science?
 What is the difference between software  What is the difference between software

engineering and system engineering?
 What is a software process? What is a software process?
 What is a software process model?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 6

FAQs about software engineeringFAQs about software engineering

 What are the costs of software engineering? What are the costs of software engineering?
 What are software engineering methods?
 What is CASE (Computer-Aided Software  What is CASE (Computer-Aided Software

Engineering)
 What are the attributes of good software? What are the attributes of good software?
 What are the key challenges facing software

engineering?engineering?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 7

What is software?What is software?

 Computer programs and associated documentation such  Computer programs and associated documentation such
as requirements, design models and user manuals.

 Software products may be developed for a particular
customer or may be developed for a general market.customer or may be developed for a general market.

 Software products may be
• Generic - developed to be sold to a range of different customers

e.g. PC software such as Excel or Word.e.g. PC software such as Excel or Word.
• Bespoke (custom) - developed for a single customer according

to their specification.
New software can be created by developing new  New software can be created by developing new
programs, configuring generic software systems or
reusing existing software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 8

What is software engineering?What is software engineering?

 Software engineering is an engineering discipline  Software engineering is an engineering discipline
that is concerned with all aspects of software
production.production.

 Software engineers should adopt a systematic
and organised approach to their work and use and organised approach to their work and use
appropriate tools and techniques depending on
the problem to be solved, the development
constraints and the resources available.constraints and the resources available.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 9

What is the difference between software
engineering and computer science?engineering and computer science?

 Computer science is concerned with theory and  Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and with the practicalities of developing and
delivering useful software.

 Computer science theories are still insufficient to Computer science theories are still insufficient to
act as a complete underpinning for software
engineering (unlike e.g. physics and electrical
engineering).engineering).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 10

What is the difference between software
engineering and system engineering?engineering and system engineering?

 System engineering is concerned with all  System engineering is concerned with all
aspects of computer-based systems
development including hardware, software and
process engineering. Software engineering is process engineering. Software engineering is
part of this process concerned with developing
the software infrastructure, control, applications the software infrastructure, control, applications
and databases in the system.

 System engineers are involved in system
specification, architectural design, integration specification, architectural design, integration
and deployment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 11

What is a software process?What is a software process?

 A set of activities whose goal is the development  A set of activities whose goal is the development
or evolution of software.

 Generic activities in all software processes are:Generic activities in all software processes are:
• Specification - what the system should do and its

development constraints
• Development - production of the software system• Development - production of the software system
• Validation - checking that the software is what the

customer wants
• Evolution - changing the software in response to • Evolution - changing the software in response to

changing demands.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 12

What is a software process model?What is a software process model?

 A simplified representation of a software process,  A simplified representation of a software process,
presented from a specific perspective.

 Examples of process perspectives are
• Workflow perspective - sequence of activities;
• Data-flow perspective - information flow;
• Role/action perspective - who does what.• Role/action perspective - who does what.

 Generic process models
• Waterfall;
• Iterative development;• Iterative development;
• Component-based software engineering.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 13

What are the costs of software engineering?What are the costs of software engineering?

 Roughly 60% of costs are development costs,  Roughly 60% of costs are development costs,
40% are testing costs. For custom software,
evolution costs often exceed development costs.evolution costs often exceed development costs.

 Costs vary depending on the type of system
being developed and the requirements of system being developed and the requirements of system
attributes such as performance and system
reliability.

 Distribution of costs depends on the
development model that is used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 14

Activity cost distributionActivity cost distribution
Wat erfall model

25 50 75 1000

It erative development

Specification Design Development Integ ration and testing

It erative development

Specification Iterative development System testing

2 5 50 75 1000

Component-based software eng ineering

2 5 50 75 1000

Development and evolution costs for long-lifetime syst ems

10 200 30 4000

Specification Development Integ ration and testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 15

System evolutionSystem development

Product development costsProduct development costs

25 50 75 1000

Specification Development System testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 16

What are software engineering methods?What are software engineering methods?

 Structured approaches to software development which  Structured approaches to software development which
include system models, notations, rules, design advice
and process guidance.

 Model descriptions Model descriptions
• Descriptions of graphical models which should be produced;

 Rules
• Constraints applied to system models;• Constraints applied to system models;

 Recommendations
• Advice on good design practice;• Advice on good design practice;

 Process guidance
• What activities to follow.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 17

What is CASE (Computer-Aided Software
Engineering)Engineering)

 Software systems that are intended to provide automated  Software systems that are intended to provide automated
support for software process activities.

 CASE systems are often used for method support.
 Upper-CASE

• Tools to support the early process activities of requirements
and design;and design;

 Lower-CASE
• Tools to support later activities such as programming,

debugging and testing.debugging and testing.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 18

What are the attributes of good software?What are the attributes of good software?

 The software should deliver the required functionality and  The software should deliver the required functionality and
performance to the user and should be maintainable,
dependable and acceptable.

 Maintainability Maintainability
• Software must evolve to meet changing needs;

 Dependability
• Software must be trustworthy;• Software must be trustworthy;

 Efficiency
• Software should not make wasteful use of system resources;• Software should not make wasteful use of system resources;

 Acceptability
• Software must accepted by the users for which it was designed.

This means it must be understandable, usable and compatible

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 19

This means it must be understandable, usable and compatible
with other systems.

What are the key challenges facing software
engineering?engineering?

 Heterogeneity, delivery and trust. Heterogeneity, delivery and trust.
 Heterogeneity

• Developing techniques for building software that can cope with
heterogeneous platforms and execution environments;heterogeneous platforms and execution environments;

 Delivery
• Developing techniques that lead to faster delivery of software;• Developing techniques that lead to faster delivery of software;

 Trust
• Developing techniques that demonstrate that software can be

trusted by its users.trusted by its users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 20

Professional and ethical responsibilityProfessional and ethical responsibility

 Software engineering involves wider  Software engineering involves wider
responsibilities than simply the application of
technical skills.technical skills.

 Software engineers must behave in an honest
and ethically responsible way if they are to be and ethically responsible way if they are to be
respected as professionals.

 Ethical behaviour is more than simply upholding
the law.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 21

Issues of professional responsibilityIssues of professional responsibility

 Confidentiality  Confidentiality
• Engineers should normally respect the confidentiality

of their employers or clients irrespective of whether
or not a formal confidentiality agreement has been or not a formal confidentiality agreement has been
signed.

 Competence  Competence
• Engineers should not misrepresent their level of

competence. They should not knowingly accept work
which is outwith their competence.which is outwith their competence.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 22

Issues of professional responsibilityIssues of professional responsibility

 Intellectual property rights  Intellectual property rights
• Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They
should be careful to ensure that the intellectual property of should be careful to ensure that the intellectual property of
employers and clients is protected.

 Computer misuse
• Software engineers should not use their technical skills to • Software engineers should not use their technical skills to

misuse other people’s computers. Computer misuse ranges
from relatively trivial (game playing on an employer’s machine,
say) to extremely serious (dissemination of viruses). say) to extremely serious (dissemination of viruses).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 23

ACM/IEEE Code of EthicsACM/IEEE Code of Ethics

 The professional societies in the US have  The professional societies in the US have
cooperated to produce a code of ethical practice.

 Members of these organisations sign up to the Members of these organisations sign up to the
code of practice when they join.

 The Code contains eight Principles related to the
behaviour of and decisions made by professional behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 24

Code of ethics - preambleCode of ethics - preamble

 Preamble Preamble
• The short version of the code summarizes aspirations at a high

level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations
change the way we act as software engineering professionals. change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details sounding but empty; together, the aspirations and the details
form a cohesive code.

• Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 25

following Eight Principles:

Code of ethics - principlesCode of ethics - principles

 PUBLIC  PUBLIC
• Software engineers shall act consistently with the public

interest.

CLIENT AND EMPLOYER  CLIENT AND EMPLOYER
• Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public
interest.interest.

 PRODUCT
• Software engineers shall ensure that their products and related • Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 26

Code of ethics - principlesCode of ethics - principles

 JUDGMENT  JUDGMENT
• Software engineers shall maintain integrity and independence

in their professional judgment.

MANAGEMENT  MANAGEMENT
• Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of
software development and maintenance.software development and maintenance.

 PROFESSION
• Software engineers shall advance the integrity and reputation of • Software engineers shall advance the integrity and reputation of

the profession consistent with the public interest.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 27

Code of ethics - principlesCode of ethics - principles

 COLLEAGUES  COLLEAGUES
• Software engineers shall be fair to and supportive of

their colleagues.their colleagues.
 SELF

• Software engineers shall participate in lifelong
learning regarding the practice of their profession
and shall promote an ethical approach to the practice
of the profession.of the profession.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 28

Ethical dilemmasEthical dilemmas

 Disagreement in principle with the policies of  Disagreement in principle with the policies of
senior management.

 Your employer acts in an unethical way and  Your employer acts in an unethical way and
releases a safety-critical system without finishing
the testing of the system.the testing of the system.

 Participation in the development of military
weapons systems or nuclear systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 29

Key pointsKey points

 Software engineering is an engineering discipline that is  Software engineering is an engineering discipline that is
concerned with all aspects of software production.

 Software products consist of developed programs and
associated documentation. Essential product attributes associated documentation. Essential product attributes
are maintainability, dependability, efficiency and usability.

 The software process consists of activities that are
involved in developing software products. Basic activities involved in developing software products. Basic activities
are software specification, development, validation and
evolution.
Methods are organised ways of producing software. They  Methods are organised ways of producing software. They
include suggestions for the process to be followed, the
notations to be used, rules governing the system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 30

notations to be used, rules governing the system
descriptions which are produced and design guidelines.

Key pointsKey points

 CASE tools are software systems which are designed to  CASE tools are software systems which are designed to
support routine activities in the software process such as
editing design diagrams, checking diagram consistency
and keeping track of program tests which have been run.and keeping track of program tests which have been run.

 Software engineers have responsibilities to the
engineering profession and society. They should not engineering profession and society. They should not
simply be concerned with technical issues.

 Professional societies publish codes of conduct which set
out the standards of behaviour expected of their out the standards of behaviour expected of their
members.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 31

Socio-technical Systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 1

ObjectivesObjectives

 To explain what a socio-technical system is and the  To explain what a socio-technical system is and the
distinction between this and a computer-based system

 To introduce the concept of emergent system properties
such as reliability and securitysuch as reliability and security

 To explain system engineering and system procurement
processesprocesses

 To explain why the organisational context of a system
affects its design and use

 To discuss legacy systems and why these are critical to
many businesses

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 2

Topics coveredTopics covered

 Emergent system properties Emergent system properties
 Systems engineering
 Organizations, people and computer systems  Organizations, people and computer systems
 Legacy systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 3

What is a system?What is a system?

 A purposeful collection of inter-related components  A purposeful collection of inter-related components
working together to achieve some common objective.

 A system may include software, mechanical, electrical
and electronic hardware and be operated by people.and electronic hardware and be operated by people.

 System components are dependent on other
system componentssystem components

 The properties and behaviour of system components are
inextricably inter-mingled

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 4

System categoriesSystem categories

 Technical computer-based systems Technical computer-based systems
• Systems that include hardware and software but

where the operators and operational processes are
not normally considered to be part of the system. not normally considered to be part of the system.
The system is not self-aware.

 Socio-technical systems Socio-technical systems
• Systems that include technical systems but also

operational processes and people who use and
interact with the technical system. Socio-technical interact with the technical system. Socio-technical
systems are governed by organisational policies and
rules.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 5

Socio-technical system characteristicsSocio-technical system characteristics
 Emergent properties Emergent properties

• Properties of the system of a whole that depend on the system
components and their relationships.

Non-deterministic Non-deterministic
• They do not always produce the same output when presented

with the same input because the systems’s behaviour is
partially dependent on human operators.partially dependent on human operators.

 Complex relationships with organisational objectives
• The extent to which the system supports organisational • The extent to which the system supports organisational

objectives does not just depend on the system itself.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 6

Emergent propertiesEmergent properties

 Properties of the system as a whole rather than  Properties of the system as a whole rather than
properties that can be derived from the
properties of components of a systemproperties of components of a system

 Emergent properties are a consequence of the
relationships between system componentsrelationships between system components

 They can therefore only be assessed and
measured once the components have been
integrated into a system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 7

Examples of emergent propertiesExamples of emergent properties

Property DescriptionProperty Description

Volume The volume of a system (the total space occupied) varies depend ing on how the
component assemblies are arranged and connected.

Reliability System reliability depends on component reliability but unexpected interactions canReliability System reliability depends on component reliability but unexpected interactions can
cause new types of failure and therefore affect the reliability of the system.

Security The security of the system (its ability to resist attack) is a complex property that
cannot be easily measured. Attacks may be devised that were not anticipated by the
system designers and so may defeat built-in safeguards.system designers and so may defeat built-in safeguards.

Repairability This property reflects how easy it is to fix a problem with the system once it has been
discovered. It depends on being able to diagnose the problem, access the components
that are faulty and modify or replace these components.

Usability This property reflects how easy it is to use the system. It depends on the technicalUsability This property reflects how easy it is to use the system. It depends on the technical
system components, its operators and its operating environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 8

Types of emergent propertyTypes of emergent property

 Functional properties Functional properties
• These appear when all the parts of a system work together to

achieve some objective. For example, a bicycle has the
functional property of being a transportation device once it hasfunctional property of being a transportation device once it has
been assembled from its components.

 Non-functional emergent properties Non-functional emergent properties
• Examples are reliability, performance, safety, and security.

These relate to the behaviour of the system in its operational
environment. They are often critical for computer-basedenvironment. They are often critical for computer-based
systems as failure to achieve some minimal defined level in
these properties may make the system unusable.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 9

System reliability engineering

 Because of component inter-dependencies,

System reliability engineering

 Because of component inter-dependencies,
faults can be propagated through the system.

 System failures often occur because of System failures often occur because of
unforeseen inter-relationships between
components.
It is probably impossible to anticipate all  It is probably impossible to anticipate all
possible component relationships.

 Software reliability measures may give a false  Software reliability measures may give a false
picture of the system reliability.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 10

Influences on reliability

 Hardware reliability

Influences on reliability

 Hardware reliability
• What is the probability of a hardware component failing and

how long does it take to repair that component?

 Software reliability
• How likely is it that a software component will produce an

incorrect output. Software failure is usually distinct fromincorrect output. Software failure is usually distinct from
hardware failure in that software does not wear out.

 Operator reliabilityOperator reliability
• How likely is it that the operator of a system will make an error?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 11

Reliability relationshipsReliability relationships

 Hardware failure can generate spurious signals  Hardware failure can generate spurious signals
that are outside the range of inputs expected by
the software.the software.

 Software errors can cause alarms to be activated
which cause operator stress and lead to operator which cause operator stress and lead to operator
errors.

 The environment in which a system is installed
can affect its reliability.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 12

The ‘shall-not’ propertiesThe ‘shall-not’ properties

 Properties such as performance and reliability  Properties such as performance and reliability
can be measured.

 However, some properties are properties that the However, some properties are properties that the
system should not exhibit
• Safety - the system should not behave in an unsafe

way;way;
• Security - the system should not permit unauthorised

use.
Measuring or assessing these properties is very  Measuring or assessing these properties is very
hard.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 13

Systems engineeringSystems engineering

 Specifying, designing, implementing, validating,  Specifying, designing, implementing, validating,
deploying and maintaining socio-technical
systems.systems.

 Concerned with the services provided by the
system, constraints on its construction and system, constraints on its construction and
operation and the ways in which it is used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 14

The system engineering processThe system engineering process

 Usually follows a ‘waterfall’ model because of the need  Usually follows a ‘waterfall’ model because of the need
for parallel development of different parts of the system
• Little scope for iteration between phases because hardware

changes are very expensive. Software may have to changes are very expensive. Software may have to
compensate for hardware problems.

 Inevitably involves engineers from different disciplines
who must work togetherwho must work together
• Much scope for misunderstanding here. Different disciplines

use a different vocabulary and much negotiation is required. use a different vocabulary and much negotiation is required.
Engineers may have personal agendas to fulfil.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 15

The systems engineering processThe systems engineering process

Requirements
definition

System
decommissioning

System
design

System
evolution

Sub-system
development

System
installation

System
integration

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 16

Inter-disciplinary involvementInter-disciplinary involvement

Electronic
engineering

Mechanical
engineering

Software
engineering

ATC systems User interfaceStructural
engineering designengineering

Electrical
engineering

Architecture
Civil

engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 17

System requirements definitionSystem requirements definition

 Three types of requirement defined at this stage Three types of requirement defined at this stage
• Abstract functional requirements. System functions

are defined in an abstract way;are defined in an abstract way;
• System properties. Non-functional requirements for

the system in general are defined;
• Undesirable characteristics. Unacceptable system • Undesirable characteristics. Unacceptable system

behaviour is specified.
 Should also define overall organisational  Should also define overall organisational

objectives for the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 18

System objectivesSystem objectives

 Should define why a system is being procured  Should define why a system is being procured
for a particular environment.

 Functional objectivesFunctional objectives
• To provide a fire and intruder alarm system for the

building which will provide internal and external
warning of fire or unauthorized intrusion.warning of fire or unauthorized intrusion.

 Organisational objectives
• To ensure that the normal functioning of work carried

out in the building is not seriously disrupted by out in the building is not seriously disrupted by
events such as fire and unauthorized intrusion.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 19

System requirements problemsSystem requirements problems

 Complex systems are usually developed to  Complex systems are usually developed to
address wicked problems
• Problems that are not fully understood;• Problems that are not fully understood;
• Changing as the system is being specified.

 Must anticipate hardware/communications  Must anticipate hardware/communications
developments over the lifetime of the system.

 Hard to define non-functional requirements Hard to define non-functional requirements
(particularly) without knowing the
component structure of the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 20

The system design processThe system design process

 Partition requirements Partition requirements
• Organise requirements into related groups.

 Identify sub-systems
• Identify a set of sub-systems which collectively can meet the

system requirements.

 Assign requirements to sub-systems Assign requirements to sub-systems
• Causes particular problems when COTS are integrated.

 Specify sub-system functionality.
 Define sub-system interfaces

• Critical activity for parallel sub-system development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 21

The system design processThe system design process

Partition
requirements

Define sub-system
interfacesrequirements

Identify
sub-systems

Specify sub-system
functionality

interfaces

Assign requirements
to sub-systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 22

System design problemsSystem design problems

 Requirements partitioning to hardware,  Requirements partitioning to hardware,
software and human components may involve a
lot of negotiation. lot of negotiation.

 Difficult design problems are often assumed to
be readily solved using software.be readily solved using software.

 Hardware platforms may be inappropriate for
software requirements so software must
compensate for this.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 23

Requirements and designRequirements and design

 Requirements engineering and system design  Requirements engineering and system design
are inextricably linked.

 Constraints posed by the system’s environment Constraints posed by the system’s environment
and other systems limit design choices so the
actual design to be used may be a requirement.
Initial design may be necessary to structure the  Initial design may be necessary to structure the
requirements.

 As you do design, you learn more about the  As you do design, you learn more about the
requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 24

Spiral model of requirements/designSpiral model of requirements/design

Requirements
Elicitation and

Analysis

Architectural
Design

Problem
Definition

Review and
Assessment

Start

System Requirements and Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 25

System Requirements and Design

System modellingSystem modelling

 An architectural model presents an abstract view  An architectural model presents an abstract view
of the sub-systems making up a system

 May include major information flows between  May include major information flows between
sub-systems

 Usually presented as a block diagram Usually presented as a block diagram
 May identify different types of functional

component in the modelcomponent in the model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 26

Burglar alarm systemBurglar alarm system

Movement
sensors

Door
sensors

Alarm
controllercontroller

Voice Telephone

External
control centre

Voice
synthesiserSiren Telephone

caller

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 27

Sub-system descriptionSub-system description

Sub-system Description

Movement sensors Detects movement in the rooms monitored by the systemMovement sensors Detects movement in the rooms monitored by the system

Door sensors Detects door opening in the external doors of the building

Alarm controller Controls the operation of the system

Siren Emits an audible warning when an intruder is suspected

Voice synthesizer Synthesizes a voice message giving the location of the suspected intruder

Telephone caller Makes external calls to notify security, the police, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 28

ATC system architectureATC system architecture
Data comms.

system
Transponder

system
Radar
system

Aircraft
comms.

Telephone
systemsystemsystemsystem comms. system

Backup
position

Position
processor

Comms.
processor

Backup comms.
processor

Flight plan

position
processor

processor processor processor

Aircraft Flight plan
database

Aircraft
simulation

system

Weather mapWeather map
system

Accounting
system

Controller
info. system

Controller
consoles

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 29

Activity logging
system

Sub-system developmentSub-system development

 Typically parallel projects developing the  Typically parallel projects developing the
hardware, software and communications.

 May involve some COTS (Commercial Off-the-Shelf)
systems procurement.systems procurement.

 Lack of communication across implementation
teams.teams.

 Bureaucratic and slow mechanism for
proposing system changes means that the development
schedule may be extended because of the need for schedule may be extended because of the need for
rework.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 30

System integration

 The process of putting hardware, software and

System integration

 The process of putting hardware, software and
people together to make a system.

 Should be tackled incrementally so that sub- Should be tackled incrementally so that sub-
systems are integrated one at a time.

 Interface problems between sub-systems are  Interface problems between sub-systems are
usually found at this stage.

 May be problems with uncoordinated deliveries  May be problems with uncoordinated deliveries
of system components.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 31

System installation

 After completion, the system has to be installed

System installation

 After completion, the system has to be installed
in the customer’s environment
• Environmental assumptions may be incorrect;
• May be human resistance to the introduction of

a new system;
• System may have to coexist with alternative • System may have to coexist with alternative

systems for some time;
• May be physical installation problems (e.g.

cabling problems);cabling problems);
• Operator training has to be identified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 32

System evolutionSystem evolution

 Large systems have a long lifetime. They must evolve to  Large systems have a long lifetime. They must evolve to
meet changing requirements.

 Evolution is inherently costly
• Changes must be analysed from a technical and business

perspective;
• Sub-systems interact so unanticipated problems can arise;• Sub-systems interact so unanticipated problems can arise;
• There is rarely a rationale for original design decisions;
• System structure is corrupted as changes are made to it.

 Existing systems which must be maintained are  Existing systems which must be maintained are
sometimes called legacy systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 33

System decommissioningSystem decommissioning

 Taking the system out of service after its useful  Taking the system out of service after its useful
lifetime.

 May require removal of materials (e.g.  May require removal of materials (e.g.
dangerous chemicals) which pollute the
environmentenvironment
• Should be planned for in the system design by

encapsulation.
May require data to be restructured and  May require data to be restructured and
converted to be used in some other system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 34

Organisations/people/systemsOrganisations/people/systems

 Socio-technical systems are organisational  Socio-technical systems are organisational
systems intended to help deliver some
organisational or business goal.organisational or business goal.

 If you do not understand the organisational
environment where a system is used, the system environment where a system is used, the system
is less likely to meet the real needs of the
business and its users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 35

Human and organisational factorsHuman and organisational factors

 Process changes Process changes
• Does the system require changes to the work

processes in the environment?

 Job changes
• Does the system de-skill the users in an environment or• Does the system de-skill the users in an environment or

cause them to change the way they work?

 Organisational changes
• Does the system change the political power structure in

an organisation?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 36

Organisational processesOrganisational processes

 The processes of systems engineering overlap and  The processes of systems engineering overlap and
interact with organisational procurement processes.

 Operational processes are the processes involved in
using the system for its intended purpose. For new using the system for its intended purpose. For new
systems, these have to be defined as part of the system
design.
Operational processes should be designed to be flexible  Operational processes should be designed to be flexible
and should not force operations to be done in a particular
way. It is important that human operators can use their
initiative if problems arise.initiative if problems arise.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 37

Procurement/development processesProcurement/development processes

ProcurementProcurement
process

Development
process

Operational
process

process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 38

System procurementSystem procurement

 Acquiring a system for an organization to meet some  Acquiring a system for an organization to meet some
need

 Some system specification and architectural design is
usually necessary before procurementusually necessary before procurement
• You need a specification to let a contract for system

development
• The specification may allow you to buy a commercial off-the-• The specification may allow you to buy a commercial off-the-

shelf (COTS) system. Almost always cheaper than developing
a system from scratch

 Large complex systems usually consist of a mix of off the  Large complex systems usually consist of a mix of off the
shelf and specially designed components. The
procurement processes for these different types of
component are usually different.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 39

component are usually different.

The system procurement processThe system procurement process

ChooseIssue requestChooseAdapt

Off-the-shelf
system available

Choose
supplier

Issue request
for bids

Choose
system

Adapt
requirements

Survey market for
existing systemsexisting systems

Let contract for
development

Negotiate
contract

Select
tender

Issue request
to tender

Custom systemCustom system
required

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 40

Procurement issuesProcurement issues

 Requirements may have to be modified to match  Requirements may have to be modified to match
the capabilities of off-the-shelf components.

 The requirements specification may be part of  The requirements specification may be part of
the contract for the development of the system.

 There is usually a contract negotiation period to  There is usually a contract negotiation period to
agree changes after the contractor to build a
system has been selected.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 41

Contractors and sub-contractorsContractors and sub-contractors

 The procurement of large hardware/software  The procurement of large hardware/software
systems is usually based around some principal
contractor.contractor.

 Sub-contracts are issued to other suppliers to
supply parts of the system.supply parts of the system.

 Customer liases with the principal contractor and
does not deal directly with sub-contractors.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 42

Contractor/Sub-contractor modelContractor/Sub-contractor model

System
customer

Principal
contr actorcontr actor

Subcontr actor 2Subcontr actor 1 Subcontr actor 3

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 43

Legacy systemsLegacy systems

 Socio-technical systems that have been developed using  Socio-technical systems that have been developed using
old or obsolete technology.

 Crucial to the operation of a business and it is often too
risky to discard these systemsrisky to discard these systems
• Bank customer accounting system;
• Aircraft maintenance system.• Aircraft maintenance system.

 Legacy systems constrain new business processes and
consume a high proportion of company budgets.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 44

Application Business policiesSupport software

Embeds
knowledge of

Uses
Application

software
Business policies

and rules
Support software

ConstrainsUsesUsesRuns-onRuns-on

System
hardware

Business
processes

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

hardware processes data

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 45

Legacy system componentsLegacy system components

 Hardware - may be obsolete mainframe hardware. Hardware - may be obsolete mainframe hardware.
 Support software - may rely on support software from

suppliers who are no longer in business.
 Application software - may be written in obsolete

programming languages.
Application data - often incomplete and inconsistent. Application data - often incomplete and inconsistent.

 Business processes - may be constrained by software
structure and functionality.structure and functionality.

 Business policies and rules - may be implicit and
embedded in the system software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 46

Socio-technical systemSocio-technical system

Business processes

Application software

Business processes

Support software

Application software

Hardware

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 47

Key pointsKey points

 Socio-technical systems include computer hardware,  Socio-technical systems include computer hardware,
software and people and are designed to meet some
business goal.
Emergent properties are properties that are characteristic  Emergent properties are properties that are characteristic
of the system as a whole and not its component parts.

 The systems engineering process includes specification,  The systems engineering process includes specification,
design, development, integration and testing. System
integration is particularly critical.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 48

Key pointsKey points

 Human and organisational factors have a significant  Human and organisational factors have a significant
effect on the operation of socio-technical systems.

 There are complex interactions between the processes of
system procurement, development and operation.system procurement, development and operation.

 A legacy system is an old system that continues to
provide essential services.provide essential services.

 Legacy systems include business processes, application
software, support software and system hardware.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 2 Slide 49

Critical SystemsCritical Systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
1

ObjectivesObjectives

 To explain what is meant by a critical system  To explain what is meant by a critical system
where system failure can have severe
human or economic consequence.human or economic consequence.

 To explain four dimensions of dependability -
availability, reliability, safety and security.availability, reliability, safety and security.

 To explain that, to achieve dependability,
you need to avoid mistakes, detect and
remove errors and limit damage caused by
failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
2

Topics coveredTopics covered

 A simple safety-critical system A simple safety-critical system
 System dependability
 Availability and reliability
 Safety
 Security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
3

Critical SystemsCritical Systems

 Safety-critical systems Safety-critical systems
• Failure results in loss of life, injury or damage to the

environment;
• Chemical plant protection system;• Chemical plant protection system;

 Mission-critical systems
• Failure results in failure of some goal-directed activity;• Failure results in failure of some goal-directed activity;
• Spacecraft navigation system;

 Business-critical systems
• Failure results in high economic losses;• Failure results in high economic losses;
• Customer accounting system in a bank;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
4

System dependabilitySystem dependability

 For critical systems, it is usually the case that the  For critical systems, it is usually the case that the
most important system property is the dependability
of the system.
The dependability of a system reflects the user’s  The dependability of a system reflects the user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use.

 Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be thing. A system does not have to be trusted to be
useful.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
5

Importance of dependabilityImportance of dependability

 Systems that are not dependable and are  Systems that are not dependable and are
unreliable, unsafe or insecure may be
rejected by their users.rejected by their users.

 The costs of system failure may be very
high.high.

 Undependable systems may cause
information loss with a high consequent
recovery cost.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
6

Development methods for critical systemsDevelopment methods for critical systems

 The costs of critical system failure are so  The costs of critical system failure are so
high that development methods may be used
that are not cost-effective for other types of that are not cost-effective for other types of
system.

 Examples of development methodsExamples of development methods
• Formal methods of software development
• Static analysis
• External quality assurance

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
7

Socio-technical critical systemsSocio-technical critical systems

 Hardware failure Hardware failure
• Hardware fails because of design and

manufacturing errors or because components
have reached the end of their natural life.have reached the end of their natural life.

 Software failure
• Software fails due to errors in its specification, • Software fails due to errors in its specification,

design or implementation.
 Operational failure

• Human operators make mistakes. Now perhaps • Human operators make mistakes. Now perhaps
the largest single cause of system failures.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
8

A software-controlled insulin pumpA software-controlled insulin pump

 Used by diabetics to simulate the function of  Used by diabetics to simulate the function of
the pancreas which manufactures insulin, an
essential hormone that metabolises blood essential hormone that metabolises blood
glucose.

 Measures blood glucose (sugar) using a Measures blood glucose (sugar) using a
micro-sensor and computes the insulin dose
required to metabolise the glucose.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
9

Insulin pump organisationInsulin pump organisation

Insulin reservoir

Needle
assembly Pump Clock

Insulin reservoir

assembly

Sensor AlarmController

Display1 Display2Display1 Display2

Power supply

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
10

Power supply

Insulin pump data-flowInsulin pump data-flow

Blood sugar
analysis

Blood sugar
sensor

Blood
Blood

parameters

Blood sugar
level

Insulin
requirement
computation

level

computation

Insulin
deliveryInsulin

pump

Insulin
Pump control

commands Insulin
requirementdelivery

controllerpump
requirement

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
11

Dependability requirementsDependability requirements

 The system shall be available to deliver  The system shall be available to deliver
insulin when required to do so.

 The system shall perform reliability and  The system shall perform reliability and
deliver the correct amount of insulin to
counteract the current level of blood sugar.counteract the current level of blood sugar.

 The essential safety requirement is that
excessive doses of insulin should never be
delivered as this is potentially life
threatening.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
12

DependabilityDependability

 The dependability of a system equates to its  The dependability of a system equates to its
trustworthiness.

 A dependable system is a system that is A dependable system is a system that is
trusted by its users.

 Principal dimensions of dependability are:
• Availability;• Availability;
• Reliability;
• Safety;• Safety;
• Security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
13

Dimensions of dependabilityDimensions of dependability

Dependability

Availability Reliability SecuritySafety

The ability of the system
to deliver services when

requested

The ability of the system
to deliver services as

specified

The ability of the system
to operate without
catastrophic failure

The ability of the system
to protect itelf against

accidental or deliberaterequested specified catastrophic failure accidental or deliberate
intrusion

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
14

Other dependability propertiesOther dependability properties

 Repairability Repairability
• Reflects the extent to which the system can be repaired in

the event of a failure
 Maintainability Maintainability

• Reflects the extent to which the system can be adapted to
new requirements;

 Survivability Survivability
• Reflects the extent to which the system can deliver

services whilst under hostile attack;
 Error tolerance Error tolerance

• Reflects the extent to which user input errors can be
avoided and tolerated.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
15

MaintainabilityMaintainability

 A system attribute that is concerned with the ease of  A system attribute that is concerned with the ease of
repairing the system after a failure has been
discovered or changing the system to include new
featuresfeatures

 Very important for critical systems as faults are often
introduced into a system because of maintenance
problemsproblems

 Maintainability is distinct from other dimensions of
dependability because it is a static and not a
dynamic system attribute. I do not cover it in this dynamic system attribute. I do not cover it in this
course.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
16

SurvivabilitySurvivability

 The ability of a system to continue to deliver  The ability of a system to continue to deliver
its services to users in the face of deliberate
or accidental attackor accidental attack

 This is an increasingly important attribute for
distributed systems whose security can be distributed systems whose security can be
compromised

 Survivability subsumes the notion of
resilience - the ability of a system to continue
in operation in spite of component failures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
17

Dependability vs performanceDependability vs performance

 Untrustworthy systems may be rejected by their  Untrustworthy systems may be rejected by their
users

 System failure costs may be very high
 It is very difficult to tune systems to make them more

dependable
It may be possible to compensate for poor  It may be possible to compensate for poor
performance

 Untrustworthy systems may cause loss of valuable  Untrustworthy systems may cause loss of valuable
information

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
18

Dependability costsDependability costs

 Dependability costs tend to increase exponentially  Dependability costs tend to increase exponentially
as increasing levels of dependability are required

 There are two reasons for this
• The use of more expensive development techniques and

hardware that are required to achieve the higher levels of
dependability

• The increased testing and system validation that is
required to convince the system client that the required
levels of dependability have been achieved

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
19

Costs of increasing dependabilityCosts of increasing dependability

Low Medium High Very
high

Ultra-high

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
20

high

Dependability

Dependability economicsDependability economics

 Because of very high costs of dependability  Because of very high costs of dependability
achievement, it may be more cost effective
to accept untrustworthy systems and pay for
failure costsfailure costs

 However, this depends on social and political
factors. A reputation for products that can’t factors. A reputation for products that can’t
be trusted may lose future business

 Depends on system type - for business  Depends on system type - for business
systems in particular, modest levels of
dependability may be adequate

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
21

Availability and reliabilityAvailability and reliability

 Reliability Reliability
• The probability of failure-free system operation

over a specified time in a given environment for
a given purposea given purpose

 Availability
• The probability that a system, at a point in time, • The probability that a system, at a point in time,

will be operational and able to deliver the
requested services

Both of these attributes can be expressed  Both of these attributes can be expressed
quantitatively

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
22

Availability and reliabilityAvailability and reliability

 It is sometimes possible to subsume system  It is sometimes possible to subsume system
availability under system reliability
• Obviously if a system is unavailable it is not

delivering the specified system servicesdelivering the specified system services
 However, it is possible to have systems with

low reliability that must be available. So long low reliability that must be available. So long
as system failures can be repaired quickly
and do not damage data, low reliability may
not be a problemnot be a problem

 Availability takes repair time into account

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
23

Reliability terminologyReliability terminology

Term DescriptionTerm Description

System failure An event that occurs at some point in time when
the system does not deliver a service as expected
by its usersby its users

System error An erroneous system state that can lead to system
behaviour that is unexpected by system users.

System fault A characteristic of a software system that canSystem fault A characteristic of a software system that can
lead to a system error. For example, failure to
initialise a variable could lead to that variable
having the wrong value when it is used.having the wrong value when it is used.

Human error or
mistake

Human behaviour that results in the introduction
of faults into a system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
24

Faults and failuresFaults and failures

 Failures are a usually a result of system errors that  Failures are a usually a result of system errors that
are derived from faults in the system

 However, faults do not necessarily result in system
errorserrors
• The faulty system state may be transient and ‘corrected’

before an error arises
Errors do not necessarily lead to system failures Errors do not necessarily lead to system failures
• The error can be corrected by built-in error detection and

recovery
• The failure can be protected against by built-in protection • The failure can be protected against by built-in protection

facilities. These may, for example, protect system
resources from system errors

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
25

Perceptions of reliabilityPerceptions of reliability

 The formal definition of reliability does not always  The formal definition of reliability does not always
reflect the user’s perception of a system’s reliability
• The assumptions that are made about the environment

where a system will be used may be incorrectwhere a system will be used may be incorrect
• Usage of a system in an office environment is likely to be

quite different from usage of the same system in a university
environment

• The consequences of system failures affects the • The consequences of system failures affects the
perception of reliability
• Unreliable windscreen wipers in a car may be irrelevant in a

dry climatedry climate
• Failures that have serious consequences (such as an engine

breakdown in a car) are given greater weight by users than
failures that are inconvenient

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
26

Reliability achievementReliability achievement

 Fault avoidance Fault avoidance
• Development technique are used that either minimise the

possibility of mistakes or trap mistakes before they result
in the introduction of system faults

 Fault detection and removal
• Verification and validation techniques that increase the

probability of detecting and correcting errors before the probability of detecting and correcting errors before the
system goes into service are used

 Fault tolerance
• Run-time techniques are used to ensure that system • Run-time techniques are used to ensure that system

faults do not result in system errors and/or that system
errors do not lead to system failures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
27

Reliability modellingReliability modelling

 You can model a system as an input-output  You can model a system as an input-output
mapping where some inputs will result in
erroneous outputs

 The reliability of the system is the probability
that a particular input will lie in the set of
inputs that cause erroneous outputsinputs that cause erroneous outputs

 Different people will use the system in
different ways so this probability is not a different ways so this probability is not a
static system attribute but depends on the
system’s environment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
28

Input/output mappingInput/output mapping

Inputs causing

IeInput set

Inputs causing
erroneous outputs

ProgramProgram

OeOutput set

Erroneous
outputs

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
29

Reliability perceptionReliability perception

Possible
inputs

User
1

Erroneous
inputs

User
3

User
23 2

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
30

Reliability improvementReliability improvement

 Removing X% of the faults in a system will not  Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study at
IBM showed that removing 60% of product defects
resulted in a 3% improvement in reliabilityresulted in a 3% improvement in reliability

 Program defects may be in rarely executed sections
of the code so may never be encountered by users. of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability
A program with known faults may therefore still be  A program with known faults may therefore still be
seen as reliable by its users

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
31

SafetySafety

 Safety is a property of a system that reflects the  Safety is a property of a system that reflects the
system’s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’s environmentwithout damage to the system’s environment

 It is increasingly important to consider software
safety as more and more devices incorporate safety as more and more devices incorporate
software-based control systems

 Safety requirements are exclusive requirements i.e.
they exclude undesirable situations rather than they exclude undesirable situations rather than
specify required system services

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
32

Safety criticality

 Primary safety-critical systems

Safety criticality

 Primary safety-critical systems
• Embedded software systems whose failure can cause the

associated hardware to fail and directly threaten people.

Secondary safety-critical systems Secondary safety-critical systems
• Systems whose failure results in faults in other systems

which can threaten people

 Discussion here focuses on primary safety-critical
systems
• Secondary safety-critical systems can only be considered • Secondary safety-critical systems can only be considered

on a one-off basis

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
33

Safety and reliability

 Safety and reliability are related but distinct

Safety and reliability

 Safety and reliability are related but distinct
• In general, reliability and availability are

necessary but not sufficient conditions for
system safety system safety

 Reliability is concerned with conformance to
a given specification and delivery of servicea given specification and delivery of service

 Safety is concerned with ensuring system
cannot cause damage irrespective of
whether whether
or not it conforms to its specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
34

Unsafe reliable systems

 Specification errors

Unsafe reliable systems

 Specification errors
• If the system specification is incorrect then the

system can behave as specified but still cause system can behave as specified but still cause
an accident

 Hardware failures generating spurious inputs
• Hard to anticipate in the specification

 Context-sensitive commands i.e. issuing the
right command at the wrong timeright command at the wrong time
• Often the result of operator error

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
35

Safety terminologySafety terminology

Term DefinitionTerm Definition

Accident (or
mishap)

An unplanned event or sequence of events which results in human death or injury,
damage to property or to the environment. A computer-controlled machine injuring its
operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an accident. A failure ofHazard A condition with the potential for causing or contributing to an accident. A failure of
the sensor that detects an obstacle in front of a machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from many people
killed as a result of an acc ident to minor injury or property damage.

Hazard An assessment of the worst possible damage that could result from a particularHazard
severity

An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic where many people are killed to
minor where only minor damage results.

Hazard
probability

The probability of the events occurring which create a hazard. Probability values tend
to be arbitrary but range from probable (say 1/100 chance of a hazard occurring) toprobability to be arbitrary but range from probable (say 1/100 chance of a hazard occurring) to
implausible (no conceivable situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an acc ident. The risk is
assessed by considering the hazard probability, the hazard severity and the probability
that a hazard will result in an accident.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
36

that a hazard will result in an accident.

Safety achievementSafety achievement

 Hazard avoidance Hazard avoidance
• The system is designed so that some classes of hazard

simply cannot arise.

Hazard detection and removal Hazard detection and removal
• The system is designed so that hazards are detected and

removed before they result in an accident

 Damage limitation
• The system includes protection features that minimise the

damage that may result from an accidentdamage that may result from an accident

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
37

Normal accidentsNormal accidents

 Accidents in complex systems rarely have a single  Accidents in complex systems rarely have a single
cause as these systems are designed to be resilient
to a single point of failure
• Designing systems so that a single point of failure does • Designing systems so that a single point of failure does

not cause an accident is a fundamental principle of safe
systems design

 Almost all accidents are a result of combinations of  Almost all accidents are a result of combinations of
malfunctions

 It is probably the case that anticipating all problem
combinations, especially, in software controlled combinations, especially, in software controlled
systems is impossible so achieving complete safety
is impossible

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
38

SecuritySecurity

 The security of a system is a system  The security of a system is a system
property that reflects the system’s ability to
protect itself from accidental or deliberate
external attackexternal attack

 Security is becoming increasingly important
as systems are networked so that external as systems are networked so that external
access to the system through the Internet is
possible

 Security is an essential pre-requisite for
availability, reliability and safety

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
39

Fundamental securityFundamental security

 If a system is a networked system and is  If a system is a networked system and is
insecure then statements about its reliability
and its safety are unreliableand its safety are unreliable

 These statements depend on the executing
system and the developed system being the system and the developed system being the
same. However, intrusion can change the
executing system and/or its data

 Therefore, the reliability and safety
assurance is no longer valid

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
40

Security terminologySecurity terminology

Term DefinitionTerm Definition

Exposure Possible loss or ha rm in a computing system. This can be loss or
damage to data or can be a loss of time and effort if recovery is
necessary after a security breach.necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harm.

Attack An exploitation of a system vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some damage.outside the system and is a deliberate attempt to cause some damage.

Threats Circumstances that have potential to cause loss or harm. You can
think of these as a sys tem vulnerability that is subjected to an attack.

Control A protective measure that reduces a system vulnerability. EncryptionControl A protective measure that reduces a system vulnerability. Encryption
would be an example of a control that reduced a vulnerability of a
weak access control system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
41

Damage from insecurityDamage from insecurity

 Denial of service Denial of service
• The system is forced into a state where normal services

are unavailable or where service provision is significantly
degradeddegraded

 Corruption of programs or data
• The programs or data in the system may be modified in

an unauthorised wayan unauthorised way

 Disclosure of confidential information
• Information that is managed by the system may be • Information that is managed by the system may be

exposed to people who are not authorised to read or use
that information

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
42

Security assuranceSecurity assurance

 Vulnerability avoidance Vulnerability avoidance
• The system is designed so that vulnerabilities do not

occur. For example, if there is no external network
connection then external attack is impossible

 Attack detection and elimination
• The system is designed so that attacks on vulnerabilities

are detected and neutralised before they result in an are detected and neutralised before they result in an
exposure. For example, virus checkers find and remove
viruses before they infect a system

 Exposure limitation
• The system is designed so that the adverse

consequences of a successful attack are minimised. For
example, a backup policy allows damaged information to
be restored

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
43

be restored

Key pointsKey points

 A critical system is a system where failure can lead  A critical system is a system where failure can lead
to high economic loss, physical damage or threats to
life.

 The dependability in a system reflects the user’s  The dependability in a system reflects the user’s
trust in that system

 The availability of a system is the probability that it
will be available to deliver services when requestedwill be available to deliver services when requested

 The reliability of a system is the probability that
system services will be delivered as specifiedsystem services will be delivered as specified

 Reliability and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
44

security

Key pointsKey points

 Reliability is related to the probability of an error  Reliability is related to the probability of an error
occurring in operational use. A system with known
faults may be reliable

 Safety is a system attribute that reflects the system’s  Safety is a system attribute that reflects the system’s
ability to operate without threatening people or the
environment
Security is a system attribute that reflects the  Security is a system attribute that reflects the
system’s ability to protect itself from external attack

 Dependability improvement requires a socio-
technical approach to design where you consider the
Dependability improvement requires a socio-
technical approach to design where you consider the
humans as well as the hardware and software

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide
45

Software ProcessesSoftware Processes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1

ObjectivesObjectives

 To introduce software process models To introduce software process models
 To describe three generic process models and

when they may be used
 To describe outline process models for

requirements engineering, software
development, testing and evolutiondevelopment, testing and evolution

 To explain the Rational Unified Process model
 To introduce CASE technology to support  To introduce CASE technology to support

software process activities

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 2

Topics coveredTopics covered

 Software process models Software process models
 Process iteration
 Process activities Process activities
 The Rational Unified Process
 Computer-aided software engineering Computer-aided software engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 3

The software processThe software process

 A structured set of activities required to develop a  A structured set of activities required to develop a
software system
• Specification;
• Design;• Design;
• Validation;
• Evolution.• Evolution.

 A software process model is an abstract representation
of a process. It presents a description of a process
from some particular perspective.from some particular perspective.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 4

Generic software process modelsGeneric software process models
 The waterfall model The waterfall model

• Separate and distinct phases of specification and
development.

 Evolutionary development Evolutionary development
• Specification, development and validation are

interleaved.
 Component-based software engineering Component-based software engineering

• The system is assembled from existing components.
 There are many variants of these models e.g. formal

development where a waterfall-like process is used but development where a waterfall-like process is used but
the specification is a formal specification that is refined
through several stages to an implementable design.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 5

Waterfall modelWaterfall model

Requir ements
definition

System andSystem and
software design

Implementa tion
and unit testing

Integ ration and
system testingsystem testing

Oper ation and
maintenance

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 6

Waterfall model phasesWaterfall model phases

 Requirements analysis and definition Requirements analysis and definition
 System and software design
 Implementation and unit testing Implementation and unit testing
 Integration and system testing
 Operation and maintenance
 The main drawback of the waterfall model is

the difficulty of accommodating change after
the process is underway. One phase has to be the process is underway. One phase has to be
complete before moving onto the next phase.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 7

Waterfall model problemsWaterfall model problems

 Inflexible partitioning of the project into distinct stages  Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
Therefore, this model is only appropriate when the  Therefore, this model is only appropriate when the
requirements are well-understood and changes will be
fairly limited during the design process.

 Few business systems have stable requirements.
 The waterfall model is mostly used for large systems

engineering projects where a system is developed at engineering projects where a system is developed at
several sites.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 8

Evolutionary developmentEvolutionary development

 Exploratory development  Exploratory development
• Objective is to work with customers and to evolve

a final system from an initial outline specification.
Should start with well-understood requirements Should start with well-understood requirements
and add new features as proposed by the
customer.customer.

 Throw-away prototyping
• Objective is to understand the system

requirements. Should start with poorly understood
requirements to clarify what is really needed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 9

Evolutionary developmentEvolutionary development

Concurr ent
acti vities

Initial
Specifica tion

Initial
version

Development
Intermedia te

versions
Outline

description

Valida tion
Final

version

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
10

Evolutionary developmentEvolutionary development

 Problems Problems
• Lack of process visibility;
• Systems are often poorly structured;• Systems are often poorly structured;
• Special skills (e.g. in languages for rapid

prototyping) may be required.
Applicability Applicability
• For small or medium-size interactive systems;
• For parts of large systems (e.g. the user interface);• For parts of large systems (e.g. the user interface);
• For short-lifetime systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
11

Component-based software engineeringComponent-based software engineering

 Based on systematic reuse where systems are  Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.
Process stages Process stages
• Component analysis;
• Requirements modification;• Requirements modification;
• System design with reuse;
• Development and integration.

 This approach is becoming increasingly used
as component standards have emerged.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
12

Reuse-oriented developmentReuse-oriented development

Requirements Component System designRequirementsRequirements
specification

Component
analysis

Development

System design
with reuse

Requirements
modification

System
and integ ration

System
validation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
13

Process iterationProcess iteration

 System requirements ALWAYS evolve in the  System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of earlier stages are reworked is always part of
the process for large systems.

 Iteration can be applied to any of the generic
process models.process models.

 Two (related) approaches
• Incremental delivery;• Incremental delivery;
• Spiral development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
14

Incremental deliveryIncremental delivery

 Rather than deliver the system as a single delivery, the  Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.required functionality.

 User requirements are prioritised and the highest
priority requirements are included in early increments.

 Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.increments can continue to evolve.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
15

Incremental developmentIncremental development

Design systemDefine outline Assign requirements

Valida teDevelop system

Design system
architectur e

Integ rate Validate

Define outline
 requirements

Assign requirements
 to increments

Valida te
increment

Develop system
increment

Integ rate
increment

Validate
system

System incomplete

Final
system

System incomplete

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
16

Incremental development advantagesIncremental development advantages

 Customer value can be delivered with each  Customer value can be delivered with each
increment so system functionality is available
earlier.earlier.

 Early increments act as a prototype to help
elicit requirements for later increments.

 Lower risk of overall project failure.
 The highest priority system services tend to

receive the most testing.receive the most testing.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
17

Extreme programmingExtreme programming

 An approach to development based on the  An approach to development based on the
development and delivery of very small
increments of functionality.increments of functionality.

 Relies on constant code improvement, user
involvement in the development team and
pairwise programming.pairwise programming.

 Covered in Chapter 17

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
18

Spiral developmentSpiral development

 Process is represented as a spiral rather than  Process is represented as a spiral rather than
as a sequence of activities with backtracking.

 Each loop in the spiral represents a phase in  Each loop in the spiral represents a phase in
the process.

 No fixed phases such as specification or No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required.
Risks are explicitly assessed and resolved  Risks are explicitly assessed and resolved
throughout the process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
19

Spiral model of the software processSpiral model of the software process

Evalua te alterna tives,Deter mine objecti ves,

Risk
anal ysis

Risk
anal ysis

Evalua te alterna tives,
identify , resolv e risks

Deter mine objecti ves,
alterna tives and

constr aints

Risk
anal ysis

Risk
anal ysis Proto-

type 1

Prototype 2

Prototype 3
Oper a-
tional
pr oto ype

REVIEW type 1

Concept of
Oper a tion

Simula tions , models , benchmar ks

S/W
requir ements

Requir ement

Product
design Detailed

design

Requir ements plan
Life-cycle plan

Requir ement
valida tion

Design
V&V

design

Code

Unit test

Integ ra tion
testAcceptance

Plan ne xt phase

Integ ra tion
and test plan

Development
plan

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
20

testService De velop , verify
ne xt-le vel pr oduct

Spiral model sectorsSpiral model sectors

 Objective setting Objective setting
• Specific objectives for the phase are identified.

 Risk assessment and reduction
• Risks are assessed and activities put in place to reduce • Risks are assessed and activities put in place to reduce

the key risks.
 Development and validation

• A development model for the system is chosen which • A development model for the system is chosen which
can be any of the generic models.

 Planning
• The project is reviewed and the next phase of the spiral • The project is reviewed and the next phase of the spiral

is planned.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
21

Process activitiesProcess activities

 Software specification Software specification
 Software design and implementation
 Software validation Software validation
 Software evolution

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
22

Software specificationSoftware specification

 The process of establishing what services are  The process of establishing what services are
required and the constraints on the system’s
operation and development.operation and development.

 Requirements engineering process
• Feasibility study;
• Requirements elicitation and analysis;
• Requirements specification;
• Requirements validation.• Requirements validation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
23

The requirements engineering processThe requirements engineering process

Feasibility
stud y

Requir ements
elicitation and

anal ysis
Requir ementsRequir ements
specification

Requir ements
validation

Feasibility
repor t

System
models

User and system
requirementsrequirements

Requir ements
document

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
24

Software design and implementationSoftware design and implementation

 The process of converting the system  The process of converting the system
specification into an executable system.

 Software design
• Design a software structure that realises the

specification;
 Implementation Implementation

• Translate this structure into an executable
program;

The activities of design and implementation  The activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
25

Design process activitiesDesign process activities

 Architectural design Architectural design
 Abstract specification
 Interface design Interface design
 Component design
 Data structure design Data structure design
 Algorithm design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
26

The software design processThe software design process

Requirements
specification

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

Design activities

design

System Software Interface Component Data
structure AlgorithmSystem

architecture
Software

specification
Interface

specification
Component
specification structure

specification

Algorithm
specification

Design products

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
27

Structured methodsStructured methods

 Systematic approaches to developing a  Systematic approaches to developing a
software design.

 The design is usually documented as a set of
graphical models.graphical models.

 Possible models
• Object model;• Object model;
• Sequence model;
• State transition model;• State transition model;
• Structural model;
• Data-flow model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
28

Programming and debuggingProgramming and debugging

 Translating a design into a program and  Translating a design into a program and
removing errors from that program.

 Programming is a personal activity - there is  Programming is a personal activity - there is
no generic programming process.

 Programmers carry out some program testing Programmers carry out some program testing
to discover faults in the program and remove
these faults in the debugging process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
29

The debugging processThe debugging process

Locate
err or

Design
error repair

Repair
error

Re-test
pr ogram

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
30

Software validationSoftware validation

 Verification and validation (V & V) is intended  Verification and validation (V & V) is intended
to show that a system conforms to its
specification and meets the requirements of
the system customer.the system customer.

 Involves checking and review processes and
system testing.system testing.

 System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed specification of the real data to be processed
by the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
31

The testing processThe testing process

Component
testing

System
testing

Acceptance
testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
32

Testing stagesTesting stages
 Component or unit testing

• Individual components are tested independently;
• Components may be functions or objects or

coherent groupings of these entities.coherent groupings of these entities.
 System testing

• Testing of the system as a whole. Testing of
emergent properties is particularly important.emergent properties is particularly important.

 Acceptance testing
• Testing with customer data to check that the • Testing with customer data to check that the

system meets the customer’s needs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
33

Testing phasesTesting phases

Requir ements
specifica tion

System
specifica tion

System
design

Detailed
designspecifica tion specifica tion design design

Module andSub-systemSystemAcceptance Module and
unit code
and test

Sub-system
integ ration
test plan

System
integ ration
test plan

Acceptance
test plan

Service Acceptance
test

System
integ ration test

Sub-system
integ ration test

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
34

Software evolutionSoftware evolution

 Software is inherently flexible and can change.  Software is inherently flexible and can change.
 As requirements change through changing

business circumstances, the software that business circumstances, the software that
supports the business must also evolve and
change.

 Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly irrelevant as (maintenance) this is increasingly irrelevant as
fewer and fewer systems are completely new.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
35

System evolutionSystem evolution

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems systemsystems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
36

The Rational Unified ProcessThe Rational Unified Process

 A modern process model derived from the  A modern process model derived from the
work on the UML and associated process.

 Normally described from 3 perspectives Normally described from 3 perspectives
• A dynamic perspective that shows phases over

time;
• A static perspective that shows process activities;• A static perspective that shows process activities;
• A practive perspective that suggests good

practice.practice.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
37

RUP phase modelRUP phase model

Phase iteration

Inception Elaboration Construction Transition

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
38

RUP phasesRUP phases

 Inception Inception
• Establish the business case for the system.

 Elaboration Elaboration
• Develop an understanding of the problem domain

and the system architecture.
 Construction

• System design, programming and testing.
Transition Transition
• Deploy the system in its operating environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
39

RUP good practiceRUP good practice

 Develop software iteratively Develop software iteratively
 Manage requirements
 Use component-based architectures Use component-based architectures
 Visually model software
 Verify software quality Verify software quality
 Control changes to software

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
40

Static workflowsStatic workflows

Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
developed to model the system requirements.

Analysis and design A design model is created and documented using architecturalAnalysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction withTest Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and
change management

This supporting workflow managed changes to the system (see
Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
41

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

Computer-aided software engineeringComputer-aided software engineering

 Computer-aided software engineering (CASE) is  Computer-aided software engineering (CASE) is
software to support software development and
evolution processes.
Activity automation Activity automation
• Graphical editors for system model development;
• Data dictionary to manage design entities;• Data dictionary to manage design entities;
• Graphical UI builder for user interface construction;
• Debuggers to support program fault finding;
• Automated translators to generate new versions of a • Automated translators to generate new versions of a

program.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
42

Case technologyCase technology

 Case technology has led to significant  Case technology has led to significant
improvements in the software process.
However, these are not the order of magnitude However, these are not the order of magnitude
improvements that were once predicted
• Software engineering requires creative thought -

this is not readily automated;this is not readily automated;
• Software engineering is a team activity and, for

large projects, much time is spent in team large projects, much time is spent in team
interactions. CASE technology does not really
support these.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
43

CASE classificationCASE classification

 Classification helps us understand the different types  Classification helps us understand the different types
of CASE tools and their support for process activities.

 Functional perspective
• Tools are classified according to their specific function.• Tools are classified according to their specific function.

 Process perspective
• Tools are classified according to process activities that • Tools are classified according to process activities that

are supported.
 Integration perspective

• Tools are classified according to their organisation into • Tools are classified according to their organisation into
integrated units.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
44

Functional tool classificationFunctional tool classification

Tool type ExamplesTool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systemsChange management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generatorsMethod-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparatorsTesting tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
45

Re-engineering tools Cross-reference systems, program re-structuring systems

Activity-based tool classificationActivity-based tool classification

Re-eng ineering tools

Testing tools

Debugg ing tools

Prog ram analysis tools

Language-processing
tools

Method suppor t tools

Prototyping tools

Configuration
management tools

Change management tools

Documentation tools

Specification Design Implementation Verification

Documentation tools

Editing tools

Planning tools

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
46

Specification Design Implementation Verification
and

Validation

CASE integrationCASE integration

 Tools Tools
• Support individual process tasks such as design

consistency checking, text editing, etc.
Workbenches Workbenches
• Support a process phase such as specification or

design, Normally include a number of integrated design, Normally include a number of integrated
tools.

 Environments
• Support all or a substantial part of an entire • Support all or a substantial part of an entire

software process. Normally include several
integrated workbenches.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
47

Tools, workbenches, environmentsTools, workbenches, environments
CASE

technolo gy

EnvironmentsWor kbenchesTools

technolo gy

Integ rated Process-centr edFileCompilersEditors

EnvironmentsWor kbenchesTools

Pro gramming TestingAnalysis and

en vironments en vironmentscompar atorsCompilersEditors

Single-method Gener al-purposeMulti-method Langua ge-specific

Pro gramming TestingAnalysis and
design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
48

Single-method
workbenches

Gener al-purpose
workbenches

Multi-method
workbenches

Langua ge-specific
workbenches

Key pointsKey points

 Software processes are the activities involved in  Software processes are the activities involved in
producing and evolving a software system.

 Software process models are abstract representations
of these processes.of these processes.

 General activities are specification, design and
implementation, validation and evolution.
Generic process models describe the organisation of  Generic process models describe the organisation of
software processes. Examples include the waterfall
model, evolutionary development and component-
based software engineering.based software engineering.

 Iterative process models describe the software process
as a cycle of activities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
49

Key pointsKey points

 Requirements engineering is the process of developing  Requirements engineering is the process of developing
a software specification.

 Design and implementation processes transform the
specification to an executable program.specification to an executable program.

 Validation involves checking that the system meets to
its specification and user needs.
Evolution is concerned with modifying the system after  Evolution is concerned with modifying the system after
it is in use.

 The Rational Unified Process is a generic process
model that separates activities from phases.model that separates activities from phases.

 CASE technology supports software process activities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide
50

Project managementProject management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 1

ObjectivesObjectives

 To explain the main tasks undertaken by project  To explain the main tasks undertaken by project
managers

 To introduce software project management and to
describe its distinctive characteristicsdescribe its distinctive characteristics

 To discuss project planning and the planning process
 To show how graphical schedule representations are  To show how graphical schedule representations are

used by project management
 To discuss the notion of risks and the risk

management processmanagement process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 2

Topics coveredTopics covered

 Management activities Management activities
 Project planning
 Project scheduling Project scheduling
 Risk management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 3

Software project management

 Concerned with activities involved in ensuring

Software project management

 Concerned with activities involved in ensuring
that software is delivered on time and on
schedule and in accordance with the schedule and in accordance with the
requirements of the organisations developing
and procuring the software.
Project management is needed because  Project management is needed because
software development is always subject to
budget and schedule constraints that are set budget and schedule constraints that are set
by the organisation developing the software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 4

Software management distinctions

 The product is intangible.

Software management distinctions

 The product is intangible.
 The product is uniquely flexible.
 Software engineering is not recognized as an  Software engineering is not recognized as an

engineering discipline with the sane status as
mechanical, electrical engineering, etc.mechanical, electrical engineering, etc.

 The software development process is not
standardised.

 Many software projects are 'one-off' projects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 5

Management activities

 Proposal writing.

Management activities

 Proposal writing.
 Project planning and scheduling.
 Project costing. Project costing.
 Project monitoring and reviews.
 Personnel selection and evaluation. Personnel selection and evaluation.
 Report writing and presentations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 6

Management commonalities

 These activities are not peculiar to software

Management commonalities

 These activities are not peculiar to software
management.

 Many techniques of engineering project  Many techniques of engineering project
management are equally applicable to
software project management.

 Technically complex engineering systems tend
to suffer from the same problems as software
systems.systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 7

Project staffingProject staffing

 May not be possible to appoint the ideal people to work  May not be possible to appoint the ideal people to work
on a project
• Project budget may not allow for the use of highly-paid

staff;staff;
• Staff with the appropriate experience may not be

available;
• An organisation may wish to develop employee skills

on a software project.
 Managers have to work within these constraints  Managers have to work within these constraints

especially when there are shortages of trained staff.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 8

Project planningProject planning

 Probably the most time-consuming project  Probably the most time-consuming project
management activity.

 Continuous activity from initial concept through  Continuous activity from initial concept through
to system delivery. Plans must be regularly
revised as new information becomes available.

 Various different types of plan may be
developed to support the main software project
plan that is concerned with schedule and plan that is concerned with schedule and
budget.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 9

Types of project planTypes of project plan

Plan Description

Quality plan Describes the quality procedures and standards that will be
used in a project. See Chapter 27.used in a project. See Chapter 27.

Validation plan Describes the approach, resources and schedule used for
system validation. See Chapter 22.

Configuration Describes the configuration management procedures andConfiguration
management plan

Describes the configuration management procedures and
structures to be used. See Chapter 29.

Maintenance plan Predicts the maintenance requirements of the system,
maintenance costs and effort required. See Chapter 21.

Staff development
plan.

Describes how the skills and experience of the project team
members will be developed. See Chapter 25.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
10

Project planning processProject planning process

Establish the project constraints Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project scheduleDraw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progressReview project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
if (problems arise) thenif (problems arise) then

Initiate technical review and possible revision
end if

end loop

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
11

end loop

The project planThe project plan

 The project plan sets out: The project plan sets out:
• The resources available to the project;
• The work breakdown;• The work breakdown;
• A schedule for the work.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
12

Project plan structureProject plan structure

 Introduction. Introduction.
 Project organisation.
 Risk analysis. Risk analysis.
 Hardware and software resource

requirements.requirements.
 Work breakdown.
 Project schedule. Project schedule.
 Monitoring and reporting mechanisms.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
13

Activity organizationActivity organization

 Activities in a project should be organised to  Activities in a project should be organised to
produce tangible outputs for management to
judge progress.
Milestones are the end-point of a process  Milestones are the end-point of a process
activity.

 Deliverables are project results delivered to  Deliverables are project results delivered to
customers.

 The waterfall process allows for the  The waterfall process allows for the
straightforward definition of progress
milestones.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
14

Milestones in the RE processMilestones in the RE process

PrototypeRequir ementsFeasibility Design Requir ements

ACTIVITIES

Evalua tion

Prototype
de velopment

User

Requir ements
anal ysis

Feasibility

Feasibility
stud y

Architectur al

Design
stud y

System

Requir ements
specifica tion

Evalua tion
repor t

User
requirements

Feasibility
repor t

Architectur al
design

System
requirements

MILESTONES

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
15

Project schedulingProject scheduling

 Split project into tasks and estimate time and  Split project into tasks and estimate time and
resources required to complete each task.

 Organize tasks concurrently to make optimal  Organize tasks concurrently to make optimal
use of workforce.

 Minimize task dependencies to avoid delays Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete.
Dependent on project managers intuition and  Dependent on project managers intuition and
experience.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
16

The project scheduling processThe project scheduling process

Estimate resources
for activities

Identify activity
dependencies

Identify
activities

Allocate people
to activities

Create project
char ts

Software
requirements

Activity charts
and bar char ts

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
17

Scheduling problemsScheduling problems

 Estimating the difficulty of problems and hence  Estimating the difficulty of problems and hence
the cost of developing a solution is hard.

 Productivity is not proportional to the number  Productivity is not proportional to the number
of people working on a task.

 Adding people to a late project makes it later Adding people to a late project makes it later
because of communication overheads.

 The unexpected always happens. Always
allow contingency in planning.allow contingency in planning.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
18

Bar charts and activity networksBar charts and activity networks

 Graphical notations used to illustrate the  Graphical notations used to illustrate the
project schedule.

 Show project breakdown into tasks. Tasks  Show project breakdown into tasks. Tasks
should not be too small. They should take
about a week or two.

 Activity charts show task dependencies and
the the critical path.
Bar charts show schedule against calendar  Bar charts show schedule against calendar
time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
19

Task durations and dependenciesTask durations and dependencies

Activity Duration (days) DependenciesActivity Duration (days) Dependencies
T1 8
T2 15
T3 15 T1 (M1)T3 15 T1 (M1)
T4 10
T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
20

T12 10 T11 (M8)

Activity networkActivity network
1 4/7 /03 15 da ys

15 da ys

T64/7 /03

8 da ys

4/8/03

15 da ys

25/8/035 da ys
2 5/7 /03

T1

M1 T3
T9

M6M4

star t

T2

M3
T6

T7

4/7 /03

7 da ys2 0 da ys15 da ys

M6

T11

M4

T10

M7T5M2
T4

5/9/03

10 da ys

15 da ys

11/8/03
10 da ys

25/7 /03

1 8/7 /03

10 da ys
M8

Finish

T10

M5

10 da ys

2 5 da ys

1 8/7 /03
T12

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
21

FinishT8
19/9/03

Activity timelineActivity timeline
4/7 11/7 18/7 2 5/7 1/8 8/8 1 5/8 22/8 2 9/8 5/9 12/9 1 9/9

Star t
T4

T1
T2

M1

T7

Star t

T7
T3

M5
T8

M3
M2M2
T6
T5

M4
T9

M7M7
T10

M6
T11

M8

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
22

T12
Finish

Staff allocationStaff allocation

4/7 1 1/7 18/7 2 5/7 1/8 8/8 15/8 22/8 2 9/8 5/9 1 2/9 19/94/7 1 1/7 18/7 2 5/7 1/8 8/8 15/8 22/8 2 9/8 5/9 1 2/9 19/9

T4

T8 T11

Fred

T12

T1

T3

Jane

T9

T2

T6 T10

Anne

T7

T5Mary

Jim

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
23

Risk managementRisk management

 Risk management is concerned with  Risk management is concerned with
identifying risks and drawing up plans to
minimise their effect on a project.
A risk is a probability that some adverse  A risk is a probability that some adverse
circumstance will occur
• Project risks affect schedule or resources;• Project risks affect schedule or resources;
• Product risks affect the quality or performance of

the software being developed;
• Business risks affect the organisation developing • Business risks affect the organisation developing

or procuring the software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
24

Software risksSoftware risks
Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is finished.Staff turnover Project Experienced staff will leave the project before it is finished.

Management change Project There will be a change of organisational management with
different priorities.

Hardware unavailability Project Hardware that is essential for the project will not be
delivered on schedule.delivered on schedule.

Requirements change Project and
product

There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and
product

Specifications of essential interfaces are not available on
scheduleproduct schedule

Size underestimate Project and
product

The size of the system has been underestimated.

CASE tool under-
performance

Product CASE tools which support the project do not perform as
anticipatedperformance anticipated

Technology change Business The underlying technology on which the system is built is
superseded by new technology.

Product competition Business A competitive product is marketed before the system is
completed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
25

completed.

The risk management processThe risk management process

 Risk identification Risk identification
• Identify project, product and business risks;

 Risk analysis
• Assess the likelihood and consequences of these

risks;
 Risk planning Risk planning

• Draw up plans to avoid or minimise the effects of
the risk;

Risk monitoring Risk monitoring
• Monitor the risks throughout the project;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
26

The risk management processThe risk management process

Risk planningRisk analysisRisk
identification

Risk
monitoring

Risk avoidance
and contingency

plans

Prioritised risk
list

List of potential
risks

Risk
assessment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
27

Risk identificationRisk identification

 Technology risks. Technology risks.
 People risks.
 Organisational risks. Organisational risks.
 Requirements risks.
 Estimation risks. Estimation risks.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
28

Risks and risk typesRisks and risk types
Risk type Possible risks

Technology The database used in the system cannot process as many transactions per second
as expected.
Software components that should be reused contain defects that limit their
functionality.

People It is impossible to recruit staff with the skills required.People It is impossible to recruit staff with the skills required.
Key staff are ill and unava ilable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different management are responsible for
the project.the project.
Organisational financial problems force reductions in the project budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements that require major design rework are proposed.Requirements Changes to requirements that require major design rework are proposed.
Customers fail to understand the impact of requirements changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
29

Risk analysisRisk analysis

 Assess probability and seriousness of each  Assess probability and seriousness of each
risk.

 Probability may be very low, low, moderate,  Probability may be very low, low, moderate,
high or very high.

 Risk effects might be catastrophic, serious, Risk effects might be catastrophic, serious,
tolerable or insignificant.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
30

Risk analysis (i)Risk analysis (i)

Risk Probability Effects

Organisational financial problems force reductions in
the project budget.

Low Catastrophic
the project budget.

It is impossible to recruit staff with the skills required
for the project.

High Catastrophic

Key staff are ill at critical times in the project. Moderate Serious

Software components that should be reused contain
defects which limit their functionality.

Moderate Serious

Changes to requirements that require major design
rework are proposed.

Moderate Serious
rework are proposed.

The organisation is restructured so that different
management are responsible for the project.

High Serious

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
31

Risk analysis (ii)Risk analysis (ii)

Risk Probability Effects

The database used in the system cannot process as
many transactions per second as expec ted.

Moderate Serious

The time required to develop the software is
underestimated.

High Serious

CASE tools cannot be integrated. High Tolerable

Customers fail to understand the impact of Moderate TolerableCustomers fail to understand the impact of
requirements changes.

Moderate Tolerable

Required training for staff is not available. Moderate Tolerable

The rate of defect repair is underestimated. Moderate TolerableThe rate of defect repair is underestimated. Moderate Tolerable

The size of the software is underestimated. High Tolerable

The code generated by CASE tools is inefficient. Moderate Insignificant

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
32

Risk planningRisk planning

 Consider each risk and develop a strategy to  Consider each risk and develop a strategy to
manage that risk.

 Avoidance strategies
• The probability that the risk will arise is reduced;

 Minimisation strategies
• The impact of the risk on the project or product will • The impact of the risk on the project or product will

be reduced;
 Contingency plansContingency plans

• If the risk arises, contingency plans are plans to
deal with that risk;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
33

Risk management strategies (i)Risk management strategies (i)

Risk Strategy

Organisational
financial problems

Prepare a briefing document for senior management
showing how th e project is making a very importantfinancial problems showing how th e project is making a very important
contribution to the goals of the business.

Recruitment
problems

Alert customer of potential difficulties and the
possibility of delays, investigate buying-inproblems possibility of delays, investigate buying-in
components.

Staff illness Reorganise team so that there is more overlap of work
and people therefore understand each other’s jobs.and people therefore understand each other’s jobs.

Defective
components

Replace potentially defective components with bought-
in components of known reliability.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
34

Risk management strategies (ii)Risk management strategies (ii)

Risk StrategyRisk Strategy

Requirements
changes

Derive traceability information to assess requirements
change impact, maximise information hiding in the
design.design.

Organisational
restructuring

Prepare a briefing document for senior management
showing how th e project is making a very important
contribution to the goals of the business.contribution to the goals of the business.

Database
performance

Investigate the possibility of buying a higher-
performance database.

Underestimated Investigate buying in components, investigate use of aUnderestimated
development time

Investigate buying in components, investigate use of a
program generator

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
35

Risk monitoringRisk monitoring

 Assess each identified risks regularly to decide  Assess each identified risks regularly to decide
whether or not it is becoming less or more
probable.probable.

 Also assess whether the effects of the risk
have changed.

 Each key risk should be discussed at
management progress meetings.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
36

Risk indicatorsRisk indicators

Risk type Potential indicators

Technology Late delivery of hardware or support software, many reported
technology problems

People Poor staff morale, poor relationships amongst team member,
job availability

Organisational Organisational gossip, lack of action by senior management

Tools Reluctance by team members to use tools, complaints about
CASE tools, demands for higher-powered workstations

Requirements Many requirements change requests, customer complaints

Estimation Failure to meet agreed schedule, failure to clear reported
defects

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
37

Key pointsKey points

 Good project management is essential for project  Good project management is essential for project
success.

 The intangible nature of software causes problems for
management.management.

 Managers have diverse roles but their most significant
activities are planning, estimating and scheduling.activities are planning, estimating and scheduling.

 Planning and estimating are iterative processes
which continue throughout the course of a
project.project.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
38

Key points

 A project milestone is a predictable state

Key points

 A project milestone is a predictable state
where a formal report of progress is presented
to management.
Project scheduling involves preparing various  Project scheduling involves preparing various
graphical representations showing project
activities, their durations and staffing. activities, their durations and staffing.

 Risk management is concerned with
identifying risks which may affect the project
and planning to ensure that these risks do not and planning to ensure that these risks do not
develop into major threats.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide
39

Software Requirements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 1

ObjectivesObjectives

 To introduce the concepts of user and system  To introduce the concepts of user and system
requirements

 To describe functional and non-functional  To describe functional and non-functional
requirements

 To explain how software requirements may be  To explain how software requirements may be
organised in a requirements document

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 2

Topics coveredTopics covered

 Functional and non-functional requirements Functional and non-functional requirements
 User requirements
 System requirements System requirements
 Interface specification

The software requirements document The software requirements document

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 3

Requirements engineeringRequirements engineering

 The process of establishing the services that the  The process of establishing the services that the
customer requires from a system and the
constraints under which it operates and is constraints under which it operates and is
developed.

 The requirements themselves are the The requirements themselves are the
descriptions of the system services and
constraints that are generated during the
requirements engineering process.requirements engineering process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 4

What is a requirement?What is a requirement?

 It may range from a high-level abstract statement  It may range from a high-level abstract statement
of a service or of a system constraint to a
detailed mathematical functional specification.

 This is inevitable as requirements may serve a
dual function
• May be the basis for a bid for a contract - therefore • May be the basis for a bid for a contract - therefore

must be open to interpretation;
• May be the basis for the contract itself - therefore

must be defined in detail;must be defined in detail;
• Both these statements may be called requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 5

Requirements abstraction (Davis)Requirements abstraction (Davis)

“If a company wishes to let a contract for a large software development project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the con tract,
offering, perhaps, different ways of meeting the client organisation’s needs. Once a
contract has been awarded, the contractor must write a system definition for the clientcontract has been awarded, the contractor must write a system definition for the client
in more detail so that the client understands and can validate what the software will
do. Both o f these documents may be called the requirements document for the
system.”

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 6

Types of requirementTypes of requirement
 User requirements User requirements

• Statements in natural language plus diagrams of the
services the system provides and its operational services the system provides and its operational
constraints. Written for customers.

 System requirements
• A structured document setting out detailed

descriptions of the system’s functions, services and
operational constraints. Defines what should be operational constraints. Defines what should be
implemented so may be part of a contract between
client and contractor.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 7

Definitions and specificationsDefinitions and specifications
User requir ement definition

1. The softw are m ust pr ovide a means of representing and
1. accessing e xternal files cr ea ted b y other tools .

1.1 The user should be pr ovided with facilities to define the type of
1.2 external files .

System requir ements specification

1.2 external files .
1.2 Each e xternal file type ma y have an associa ted tool w hich ma y be
1.2 applied to the file .
1.3 Each e xternal file type ma y be r epr esented as a specific icon on
1.2 the user’ s displa y.
1.4 Facilities should be pr ovided for the icon r epresenting an1.4 Facilities should be pr ovided for the icon r epresenting an
1.2 external file type to be defined b y the user .
1.5 When a user selects an icon r epr esenting an e xternal file , the
1.2 effect of that selection is to apply the tool associated with the type of
1.2 the external file to the file represented by the selected icon.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 8

1.2 the external file to the file represented by the selected icon.

Requirements readersRequirements readers

Client mana gersClient mana gers
System end-users
Client eng ineers
Contr actor mana gers
System ar chitects

User
requir ements

System ar chitects

System end-usersSystem end-users
Client eng ineers
System ar chitects
Software de velopers

System
requir ements

Client eng ineers (perha ps)
System ar chitects
Software de velopers

Software design
specifica tion

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 9

Software de velopersspecifica tion

Functional and non-functional requirementsFunctional and non-functional requirements

 Functional requirements Functional requirements
• Statements of services the system should provide, how the

system should react to particular inputs and how the system
should behave in particular situations.

 Non-functional requirements
• constraints on the services or functions offered by the system

such as timing constraints, constraints on the development such as timing constraints, constraints on the development
process, standards, etc.

 Domain requirements
• Requirements that come from the application domain of the • Requirements that come from the application domain of the

system and that reflect characteristics of that domain.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 10

Functional requirementsFunctional requirements

 Describe functionality or system services. Describe functionality or system services.
 Depend on the type of software, expected users

and the type of system where the software is and the type of system where the software is
used.

 Functional user requirements may be high-level  Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe
the system services in detail.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 11

The LIBSYS systemThe LIBSYS system

 A library system that provides a single interface  A library system that provides a single interface
to a number of databases of articles in different
libraries.libraries.

 Users can search for, download and print these
articles for personal study.articles for personal study.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 12

Examples of functional requirementsExamples of functional requirements

 The user shall be able to search either all of the The user shall be able to search either all of the
initial set of databases or select a subset from it.

 The system shall provide appropriate viewers for The system shall provide appropriate viewers for
the user to read documents in the document
store.store.

 Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to(ORDER_ID) which the user shall be able to
copy to the account’s permanent storage area.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 13

Requirements imprecisionRequirements imprecision

 Problems arise when requirements are not  Problems arise when requirements are not
precisely stated.

 Ambiguous requirements may be interpreted in  Ambiguous requirements may be interpreted in
different ways by developers and users.

 Consider the term ‘appropriate viewers’ Consider the term ‘appropriate viewers’
• User intention - special purpose viewer for each

different document type;
• Developer interpretation - Provide a text viewer that

shows the contents of the document.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 14

Requirements completeness and consistencyRequirements completeness and consistency

 In principle, requirements should be both complete and  In principle, requirements should be both complete and
consistent.

 Complete
• They should include descriptions of all facilities

required.
Consistent Consistent
• There should be no conflicts or contradictions in the

descriptions of the system facilities.descriptions of the system facilities.
 In practice, it is impossible to produce a complete and

consistent requirements document.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 15

Non-functional requirementsNon-functional requirements

 These define system properties and constraints  These define system properties and constraints
e.g. reliability, response time and storage
requirements. Constraints are I/O device
capability, system representations, etc.capability, system representations, etc.

 Process requirements may also be specified
mandating a particular CASE system, mandating a particular CASE system,
programming language or development method.

 Non-functional requirements may be more critical  Non-functional requirements may be more critical
than functional requirements. If these are not
met, the system is useless.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 16

Non-functional classificationsNon-functional classifications

 Product requirements Product requirements
• Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability, etc.

Organisational requirements Organisational requirements
• Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,
implementation requirements, etc.implementation requirements, etc.

 External requirements
• Requirements which arise from factors which are external to the • Requirements which arise from factors which are external to the

system and its development process e.g. interoperability
requirements, legislative requirements, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 17

Non-functional requirement typesNon-functional requirement types
Non-functional
requir ements

Product
requir ements

Organisational
requir ements

External
requir ements

requir ements

Efficiency Relia bility Porta bility Inter oper ability Ethical

requir ements requir ements requir ements

Usa bility

requir ements requir ements requir ements requir ements requir ements

Leg islativeImplementa tion Standar dsDeli very

Perfor mance Space

Usa bility
requir ements

Leg islative
requir ements

Implementa tion
requir ements

Standar ds
requir ements

Deli very
requir ements

SafetyPrivacy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 18

Perfor mance
requir ements

Space
requir ements

Safety
requir ements

Privacy
requir ements

Non-functional requirements examplesNon-functional requirements examples
 Product requirement Product requirement

8.1 The user interface for LIBSYS shall be implemented as simple HTML
without frames or Java applets.

 Organisational requirement Organisational requirement
9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-
STAN-95.STAN-95.

 External requirement
7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the
operators of the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 19

Goals and requirementsGoals and requirements

 Non-functional requirements may be very difficult to state  Non-functional requirements may be very difficult to state
precisely and imprecise requirements may be difficult to
verify.
Goal Goal
• A general intention of the user such as ease of use.

 Verifiable non-functional requirement Verifiable non-functional requirement
• A statement using some measure that can be objectively

tested.

Goals are helpful to developers as they convey the  Goals are helpful to developers as they convey the
intentions of the system users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 20

ExamplesExamples

 A system goal A system goal
• The system should be easy to use by experienced controllers

and should be organised in such a way that user errors are
minimised.minimised.

 A verifiable non-functional requirement
• Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this training,functions after a total of two hours training. After this training,
the average number of errors made by experienced users shall
not exceed two per day.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 21

Requirements measuresRequirements measures

Property MeasureProperty Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size M BytesSize M Bytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 22

Portability Percentage of target dependent statements
Number of target systems

Requirements interactionRequirements interaction

 Conflicts between different non-functional  Conflicts between different non-functional
requirements are common in complex systems.

 Spacecraft systemSpacecraft system
• To minimise weight, the number of separate chips in

the system should be minimised.
• To minimise power consumption, lower power chips • To minimise power consumption, lower power chips

should be used.
• However, using low power chips may mean that

more chips have to be used. Which is the most more chips have to be used. Which is the most
critical requirement?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 23

Domain requirementsDomain requirements

 Derived from the application domain and  Derived from the application domain and
describe system characteristics and features that
reflect the domain.reflect the domain.

 Domain requirements be new functional
requirements, constraints on existing requirements, constraints on existing
requirements or define specific computations.

 If domain requirements are not satisfied, the
system may be unworkable.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 24

Library system domain requirementsLibrary system domain requirements
 There shall be a standard user interface to all There shall be a standard user interface to all

databases which shall be based on the Z39.50
standard.

 Because of copyright restrictions, some
documents must be deleted immediately on
arrival. Depending on the user’s requirements,arrival. Depending on the user’s requirements,
these documents will either be printed locally on
the system server for manually forwarding to thethe system server for manually forwarding to the
user or routed to a network printer.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 25

Train protection systemTrain protection system

 The deceleration of the train shall be computed
as:
• Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensatedgradient
gradient/alpha and where the values of 9.81ms2

/alpha are known for different types of train.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 26

Domain requirements problemsDomain requirements problems

 Understandability Understandability
• Requirements are expressed in the language of the

application domain;application domain;
• This is often not understood by software engineers

developing the system.
Implicitness Implicitness
• Domain specialists understand the area so well that

they do not think of making the domain requirements they do not think of making the domain requirements
explicit.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 27

User requirementsUser requirements

 Should describe functional and non-functional  Should describe functional and non-functional
requirements in such a way that they are
understandable by system users who don’t have understandable by system users who don’t have
detailed technical knowledge.

 User requirements are defined using natural User requirements are defined using natural
language, tables and diagrams as these can be
understood by all users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 28

Problems with natural languageProblems with natural language

 Lack of clarity  Lack of clarity
• Precision is difficult without making the document

difficult to read.difficult to read.
 Requirements confusion

• Functional and non-functional requirements tend to
be mixed-up.

 Requirements amalgamation
• Several different requirements may be expressed • Several different requirements may be expressed

together.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 29

LIBSYS requirementLIBSYS requirement

4..5 LIBSYS shall provide a financial accounting
system that maintains records of all payments system that maintains records of all payments
made by users of the system. System managers
may configure this system so that regular users may configure this system so that regular users
may receive discounted rates.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 30

Editor grid requirementEditor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may beoption on the control panel. Initially, the grid is off. The grid may be
turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid
lines shown will be reduced to avoid filling the smaller diagram
with grid lines.with grid lines.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 31

Requirement problemsRequirement problems

 Database requirements includes both conceptual and  Database requirements includes both conceptual and
detailed information
• Describes the concept of a financial accounting system that is

to be included in LIBSYS;to be included in LIBSYS;
• However, it also includes the detail that managers can

configure this system - this is unnecessary at this level.
 Grid requirement mixes three different kinds of  Grid requirement mixes three different kinds of

requirement
• Conceptual functional requirement (the need for a grid);
• Non-functional requirement (grid units);• Non-functional requirement (grid units);
• Non-functional UI requirement (grid switching).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 32

Structured presentationStructured presentation

2.6.1 Grid facilities
The editor shall provide a grid facility where a m atrix of horizontal andThe editor shall provide a grid facility where a m atrix of horizontal and
vertical lines provide a background to the editor window. This grid shall be a
passive grid where the alignment of entities is the user's responsibility.
Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities 'snap-to' grid lines can be useful,entities. Although an active grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person to decide where entities
should be positioned.
Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6
Source: Ray Wilson, Glasgow Office

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 33

Guidelines for writing requirementsGuidelines for writing requirements

 Invent a standard format and use it for all  Invent a standard format and use it for all
requirements.

 Use language in a consistent way. Use shall for  Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.requirements.

 Use text highlighting to identify key parts of the
requirement.

 Avoid the use of computer jargon.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 34

System requirementsSystem requirements

 More detailed specifications of system functions,  More detailed specifications of system functions,
services and constraints than user requirements.

 They are intended to be a basis for designing the They are intended to be a basis for designing the
system.

 They may be incorporated into the system
contract.contract.

 System requirements may be defined or
illustrated using system models discussed in illustrated using system models discussed in
Chapter 8.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 35

Requirements and designRequirements and design

 In principle, requirements should state what the  In principle, requirements should state what the
system should do and the design should
describe how it does this.

 In practice, requirements and design are
inseparable
• A system architecture may be designed to structure • A system architecture may be designed to structure

the requirements;
• The system may inter-operate with other systems

that generate design requirements;that generate design requirements;
• The use of a specific design may be a domain

requirement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 36

requirement.

Problems with NL specificationProblems with NL specification

 Ambiguity Ambiguity
• The readers and writers of the requirement must

interpret the same words in the same way. NL is
naturally ambiguous so this is very difficult.naturally ambiguous so this is very difficult.

 Over-flexibility
• The same thing may be said in a number of different • The same thing may be said in a number of different

ways in the specification.
 Lack of modularisation

• NL structures are inadequate to structure system • NL structures are inadequate to structure system
requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 37

Alternatives to NL specificationAlternatives to NL specification

Notation DescriptionNotation Description

Structured natural
language

This approach depends on defining standard forms or templates to express the
requirements specification.

Design This approach uses a language like a programming language but with more abstractDesign
description
languages

This approach uses a language like a programming language but with more abstract
features to specify the requirements by defining an operational model of the system.
This approach is not now widely used although it can be useful for interface
specifications.

Graphical A graphical language, supplemented by text annotations is used to define theGraphical
notations

A graphical language, supplemented by text annotations is used to define the
functional requirements for the system. An early example of such a graphical
language was SADT. Now, use-case descriptions and sequence d iagrams are
commonly used .

Mathematical
specifications

These are notations based on mathematical concepts such as finite-state machines or
sets. These unambiguous specifications reduce the arguments between customer and
contractor about system functionality. However, most customers don’t understand
formal specifications and are reluctant to accept it as a system contract.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 38

formal specifications and are reluctant to accept it as a system contract.

Structured language specificationsStructured language specifications

 The freedom of the requirements writer is limited  The freedom of the requirements writer is limited
by a predefined template for requirements.

 All requirements are written in a standard way.All requirements are written in a standard way.
 The terminology used in the description may be

limited.
The advantage is that the most of the  The advantage is that the most of the
expressiveness of natural language is
maintained but a degree of uniformity is imposed maintained but a degree of uniformity is imposed
on the specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 39

Form-based specificationsForm-based specifications

 Definition of the function or entity. Definition of the function or entity.
 Description of inputs and where they come from.
 Description of outputs and where they go to. Description of outputs and where they go to.
 Indication of other entities required.

Pre and post conditions (if appropriate). Pre and post conditions (if appropriate).
 The side effects (if any) of the function.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 40

Form-based node specificationForm-based node specification

Insulin Pump/Control Software/SRS/3.3.2Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: Safe sugar level
Description Computes the dose of insulin to be delivered when the current measured sugar level is in

the safe zone between 3 and 7 units.
Inputs Current sugar reading (r2), the previous two readings (r0 and r1)Inputs Current sugar reading (r2), the previous two readings (r0 and r1)
Source Current sugar reading from sensor. Other readings from memory.
Outputs CompDose Ğ the dose in insulin to be delivered
Destination Main control loop
Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate ofAction: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of

increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.Requires Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..
Post-condition r0 is replaced by r1 then r1 is replaced by r2
Side-effects None

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 41

Tabular specificationTabular specification

 Used to supplement natural language. Used to supplement natural language.
 Particularly useful when you have to define a

number of possible alternative courses of action.number of possible alternative courses of action.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 42

Tabular specificationTabular specification

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of
increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0
increase decreasing ((r2-r1)<(r1-r0))

Sugar level increasing and rate of
increase stable or increasing. ((r2-r1) •
(r1-r0))

CompDose = round ((r2-r1)/4)
If rounded result = 0 then
CompDose = MinimumDose(r1-r0)) CompDose = MinimumDose

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 43

Graphical modelsGraphical models

 Graphical models are most useful when you  Graphical models are most useful when you
need to show how state changes or where you
need to describe a sequence of actions.need to describe a sequence of actions.

 Different graphical models are explained in
Chapter 8.Chapter 8.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 44

Sequence diagramsSequence diagrams

 These show the sequence of events that take  These show the sequence of events that take
place during some user interaction with a
system.

 You read them from top to bottom to see the
order of the actions that take place.
Cash withdrawal from an ATM Cash withdrawal from an ATM
• Validate card;
• Handle request;• Handle request;
• Complete transaction.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 45

Sequence diagram of ATM withdrawalSequence diagram of ATM withdrawal
ATM Database

Card
Card number

Card OK
PIN request

PIN
Option menu Validate cardOption menu

<<exception>>
invalid card

Withdraw request

Amount request

Balance request

Balance

Validate card

Amount request

Amount

<<exception>>
insufficient cash

Debit (amount)

Debit response

Handle request

Card

Card removed

Cash

Cash removed

Complete
transaction

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 46

Receipt

Interface specificationInterface specification

 Most systems must operate with other systems  Most systems must operate with other systems
and the operating interfaces must be specified as
part of the requirements.

 Three types of interface may have to be defined
• Procedural interfaces;
• Data structures that are exchanged;• Data structures that are exchanged;
• Data representations.

 Formal notations are an effective technique for  Formal notations are an effective technique for
interface specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 47

PDL interface descriptionPDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer} //PrintServer

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 48

The requirements documentThe requirements document

 The requirements document is the official  The requirements document is the official
statement of what is required of the system
developers.developers.

 Should include both a definition of user
requirements and a specification of the system requirements and a specification of the system
requirements.

 It is NOT a design document. As far as possible,
it should set of WHAT the system should do
rather than HOW it should do it

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 49

Users of a requirements documentUsers of a requirements document

Specify the requirements and

Use the requirements

Specify the requirements and
read them to check that they

meet their needs. T hey
specify changes to the

requirements

System
customers

Use the requirements
document to plan a bid for
the system and to plan the

system development process

Use the requirements to

Managers

Use the requirements to
develop validation tests for

Use the requirements to
understand what system is to

be developed

System test
eng ineers

System
eng ineers

develop validation tests for
the system

eng ineers

Use the requirements to help
understand the system and

the relationships between its

System
maintenance

eng ineers

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 50

the relationships between its
par ts

eng ineers

IEEE requirements standardIEEE requirements standard

 Defines a generic structure for a requirements  Defines a generic structure for a requirements
document that must be instantiated for each
specific system. specific system.
• Introduction.
• General description.
• Specific requirements.
• Appendices.
• Index.• Index.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 51

Requirements document structureRequirements document structure

 Preface Preface
 Introduction
 Glossary

User requirements definition User requirements definition
 System architecture
 System requirements specification System requirements specification
 System models
 System evolution
 Appendices
 Index

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 52

Key pointsKey points

 Requirements set out what the system should do and  Requirements set out what the system should do and
define constraints on its operation and implementation.

 Functional requirements set out services the system
should provide.should provide.

 Non-functional requirements constrain the system being
developed or the development process.developed or the development process.

 User requirements are high-level statements of what the
system should do. User requirements should be written
using natural language, tables and diagrams.using natural language, tables and diagrams.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 53

Key pointsKey points

 System requirements are intended to
communicate the functions that the system communicate the functions that the system
should provide.

 A software requirements document is an agreed  A software requirements document is an agreed
statement of the system requirements.

 The IEEE standard is a useful starting point for
defining more detailed specific requirements defining more detailed specific requirements
standards.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 54

